role of the HOMO in chemical reactivity, ${ }^{13 \mathrm{~b}, 14 \mathrm{~b}}$ the present work on the role of HOMO in governing molecular geometry suggests that the behavior of the HOMO may provide a simple unifying principle in chemistry for understanding the structure and reactivity of molecules.
and overlap forces whereas Nakatsuji, by adopting certain approximations for the two- and three-center force integrals, splits the atomic plus nuclear repulsion force into atomic dipole (AD) and gross charge (GC) forces, while the overlap force is expresed as an exchange (EC) force. Nakatsuji's model predicts the shapes of a number of molecule classes including $\mathrm{AH}_{2}, \mathrm{AH}_{3}, \mathrm{HAB}, \mathrm{H}_{2} \mathrm{AB}, \mathrm{AB}_{2}, \mathrm{ABC}$, and $\mathrm{X}_{m} \mathrm{ABY}$ molecules. The following remarks may be made regarding this model. (1) The planar shapes of 7 valence electron AH_{3} molecules like $\mathrm{CH}_{3}, \mathrm{NH}_{3}{ }^{+}$ etc., have been accepted rather than predicted. (2) The use of Mulliken approximation, which is rather inaccurate ${ }^{78}$ in calculating force integrals, may be open to question. (3) For AH_{3} and $\mathrm{H}_{2} \mathrm{AB}$ molecules the vanishing of the net force (along the pyramidal axis) on \mathbf{A} in the planar configuration does not necessarily mean that the molecule considered is planar; this out-of-plane force will always vanish in the planar configuration for symmetry reasons. Actually, for predicting the equilib-

Acknowledgment. It is a pleasure to thank Professor C. A. Coulson for his interest and many helpful comments. I am very much indebted to Dr. P. N. Sen and Dr. S. K. Bose for their help and many hours of stimulating discussion which have made this work possible. I would also like to thank Professors A. B. Biswas, S. Basu, S. R. Palit, and M. Chaudhury for their interest and encouragement.
rium shapes of such planar molecules one should choose a force in a HAH or HAB plane. (4) The fairly good numerical estimates of the pyramidal angles in $\mathrm{CH}_{3}{ }^{-}$and $\mathrm{H}_{2} \mathrm{CO}$ (excited), based on force computations using INDO charge densities, are quite interesting in view of the well-known failure of such attempts on other molecules using $a b$ initio densities. ${ }^{9 \cdot 10 a}$ Since a major source of trouble in ab initio force computations is inner-shell polarization, the neglect of core polarization in CNDO/ 2 and INDO densities could mean that such densities may be more useful for force computations on molecules than the corresponding $a b$ initio densities, as far as equilibrium shape predictions are concerned.
(77) H. Nakatsuji, J. Amer. Chem. Soc., 95, 345, 354, 2084 (1973).
(78) B. M. Deb, Proc. Indian Nat. Sci. Acad., Sect. A, 37, 349 (1971).

A Simple Mechanical Model for Molecular Geometry Based on the Hellmann-Feynman Theorem. II. HAAH, BAAB, $\mathrm{AB}_{3}, \mathrm{H}_{2} \mathrm{AB}$, and $\mathrm{B}_{2} \mathrm{AC}$ Molecules

B. M. Deb, ${ }^{* 1 a}$ P. N. Sen, ${ }^{1 \mathrm{~b}}$ and S. K. Bose ${ }^{\text {1b }}$

Contribution from the Departments of Chemistry, Indian Institute of Technology, Bombay, India, and the University College of Science, Calcutta, India. Received March 6, 1973

Abstract

The simple model for molecular geometry proposed in an earlier paper (part I) has been applied to five more molecule classes. The postulate that the gross equilibrium molecular shapes are determined primarily by the behavior of the highest occupied molecular orbital (HOMO) is successful in making geometry predictions for the above five molecule classes. These Walsh-type predictions seem to work well even if one replaces the nonhydrogenic atoms by groups of atoms. The change of shape of one molecule on being added to another molecule, e.g., in $\mathrm{BF}_{3} \leftarrow \mathrm{NH}$, can also be predicted.

In part I (hereafter referred to as I) ${ }^{2}$ a simple mechanical model for molecular geometry, based on qualitative interpretations drawn from the Hellmann-Feynman (H-F) theorem, was proposed. The general principles of the method were illustrated with six molecule classes: $\mathrm{AH}_{2}, \mathrm{AH}_{3}, \mathrm{AH}_{4}, \mathrm{AB}_{2}, \mathrm{HAB}$, and $A B C$. In this paper we examine five more molecule classes and show that the model is successful in predicting the gross shapes and certain bond angle and bond length variations in these molecules also (see ref 76 in I).

The Shapes of Molecules

1. HAAH Molecules (Linear-Bent and PlanarNonplanar Correlations). Planar bent HAAH molecules may assume two forms, cis and trans. In order to decide whether a planar HAAH molecule will adopt a linear or a nonlinear form, it will be sufficient to consider correlations between the cis form and the linear form. This refers to a change in the angular variable θ
(1) (a) Indian Institute of Technology; (b) University College of Sciencr.
(2) B. M. Deb, J. Amer. Chem. Soc., 96, 2030 (1974).
(Figure 1a) with nuclear motions. Correlations involving a change in the dihedral angle will be considered later. The bending of the molecule is achieved by symmetric motions of the hydrogen atoms in the molecular plane, keeping the two A atoms and the $\mathrm{A}-\mathrm{H}$ length fixed.

By using the rules given in I the ten valence MO's of a cis ($C_{2 v}$) HAAH molecule ($\angle \mathrm{H}_{1} \mathrm{AZ}_{1}=30^{\circ}$, say) may be constructed from appropriate s and p group AO's (see Table I) as follows: (i) $1 a_{1}$, an MO that is A-A and $\mathrm{A}-\mathrm{H}$ bonding; (ii) $2 \mathrm{a}_{1}$, an MO that is $\mathrm{A}-\mathrm{A}$ bonding and feeble A-H bonding; (iii) $3 a_{1}$, an MO which is feeble A-A bonding and feeble $\mathrm{A}-\mathrm{H}$ antibonding (this may also be taken as a "lone pair" combination of AO's on the heavier atoms); (iv) $4 a_{1}$, an MO that is mild A-A bonding and $\mathrm{A}-\mathrm{H}$ antiboding; (v) $1 \mathrm{~b}_{1}$, a $\pi \mathrm{MO}$ which is A-A bonding; (vi) $1 a_{2}$, another π MO which is $\mathrm{A}-\mathrm{A}$ antibonding; (vii) $1 \mathrm{~b}_{2}$, an MO that is $\mathrm{A}-\mathrm{H}$ bonding and feeble $\mathrm{A}-\mathrm{A}$ antibonding; (viii) $2 \mathrm{~b}_{2}$, an MO which is feeble $\mathrm{A}-\mathrm{H}$ bonding and feeble $\mathrm{A}-\mathrm{A}$ antibonding; (ix) $3 b_{2}$, an MO which is feeble $A-H$ and feeble $A-A$ antibonding (this may also be taken as a 'lone pair" combination of AO's on the heavier atoms); (x) $4 b_{2}$,
an MO that is $\mathrm{A}-\mathrm{H}$ antibonding and feeble $\mathrm{A}-\mathrm{A}$ antibonding. ${ }^{3}$ The MO's are represented schematically in Figures 2-4. They are not identical with calculated MO's. ${ }^{4}$ However, the qualitative bonding features of our MO's are essentially the same as the ab initio MO's. ${ }^{4}$ Using the rules in I and considering the MO energy order for AH_{2} molecules, the above constructed MO's may be arranged in the sequence $1 \mathrm{a}_{1}<1 \mathrm{~b}_{2}<$ $2 \mathrm{a}_{1}<1 \mathrm{~b}_{1}<3 \mathrm{a}_{1}<2 \mathrm{~b}_{2}<1 \mathrm{a}_{2}<3 \mathrm{~b}_{2}<4 \mathrm{a}_{1}<4 \mathrm{~b}_{2}$. This order matches with the calculated energy order of Fink and Allen ${ }^{5 \mathrm{a}}$ and Gimarc ${ }^{4 \mathrm{a}}$ but is not identical with that of Kaldor and Shavitt ${ }^{\text {bb }}$ as well as of Palke and Pitzer. ${ }^{5 b}$

The $1 a_{1}$ MO concentrates more charge inside the molecular trapezium than outside it and so this MO will not favor a linear molecule. The $2 a_{1}$ orbital will also favor a nonlinear molecule. By looking at the balance of atomic and overlap forces generated by the $3 \mathrm{a}_{1}$ MO it is reasonable to expect that this orbital will result in a negative transverse force on the protons (see I) and will, therefore, favor a linear molecule. Because the orbitals $l b_{1}$ and $l a_{2}$ are perpendicular to the plane of the molecule and are concerned with only the A-A bond, they are expected to exert very little transverse force on the terminal protons. The $1 \mathrm{~b}_{2} \mathrm{MO}$ will clearly favor a linear form since it throws more charge outside than inside the molecular trapezium. However, an examination of the overlap and atomic forces indicates that the $2 \mathrm{~b}_{2} \mathrm{MO}$ will exert a net positive charge on the terminal protons and will therefore favor a bent form. The mildly antibonding $3 \mathrm{~b}_{2}$ MO will obviously favor a linear configuration. These expectations are in agreement with the signs of the gradients of the MO energy curves obtained in $a b$ initio and extended Hückel calculations, ${ }^{5}$ as well as previous force calculations. ${ }^{6}$ The various predictions about molecular shapes, made on the basis of the shape diagram (Figures 5-8) for HAAH molecules, are summarized in Table II. Such predictions seem to parallel those for HAB molecules (see I) so that the HAAH molecules may be regarded as a special class of HAB molecules as far as molecular shapes are concerned. Ab initio calculations on twoand five-eight-electron HAAH molecules would help to decide whether the present shape predictions for these molecules are correct. ${ }^{7}$
(3) In constructing the b_{2} MO's we have kept $A-A$ antibonding as small as possible.
(4) (a) B. M. Gimarc, J. Amer. Chem. Soc., 92, 266 (1970); see also G. W. Schnuelle and R. G. Parr, ibid., 94, 8974 (1972); (b) U. Kaldor and I. Shavitt, J. Chem. Phys., 44, 1823 (1966).
(5) (a) W. H. Fink and L. C. Allen, J. Chem. Phys., 46, 2261 (1967); (b) W. E. Palke and R. M. Pitzer, ibid., 46, 3948 (1967).
(6) C. A. Coulson and B. M. Deb, Int. J. Quantum Chem., 5, 411 (1971).
(7) In the preliminary classification of planar HAAH molecules into bent and linear ones, one may start from the trans configuration, instead of the cis, and arrive at similar conclusions, although the situation here is less straightforward. As an illustration, consider the seven low-lying valence MO's of trans HAAH molecules, as depicted in Figure 9. These may be arranged in the energy order $1 a_{g}<1 b_{u}<2 b_{u}$, $2 \mathrm{a}_{\mathrm{g}}<1 \mathrm{a}_{\mathrm{u}}<3 \mathrm{a}_{\mathrm{g}}<1 \mathrm{~b}_{\mathrm{g}}$. However, the MO's $2 \mathrm{~b}_{\mathrm{u}}$ and $2 \mathrm{a}_{\mathrm{g}}$ cross each other in the Walsh-Allen diagram, ${ }^{4 a}$ making the choice of HOMO difficult for five-ten valence electron molecules. The $2 b_{u}$ and $1 a_{u}$ orbitals correlate with the $1 \pi_{u}$ orbitals of the linear molecule which, in turn, correlate with the $1 b_{1}$ and $3 a_{1}$ orbitals of the cis molecule. The $2 a_{g}$ orbital correlates with the $2 \sigma_{\mathrm{g}}$ orbital of the linear molecule and the $2 \mathrm{a}_{\mathrm{a}}$ orbital of the cis molecule. The $3 \mathrm{a}_{\mathrm{g}}$ and $1 \mathrm{~b}_{\mathrm{g}}$ MO's correlate with the $1 \pi_{\mathrm{g}}$ MO's of the linear molecule. From Figure 9 it is clear that the $1 a_{g}, 2 b_{u}$, and $3 a_{g}$ orbitals will favor a bent molecule while the $1 b_{u}$ and $2 \mathrm{a}_{\mathrm{g}}$ orbitals will favor a linear molecule. The $1 \mathrm{a}_{\mathrm{u}}$ and $1 \mathrm{~b}_{\mathrm{g}}$ orbitals, being perpendicular to the molecular plane, will have little influence

(a)

(c)

(e)

(b)

(d)

(g)

Figure 1. Coordinate systems and transverse forces $\left(f_{\perp}\right)$ for five molecule classes: (a) $C_{2 v} \mathrm{HAAH}$ molecule, (b) $C_{2} \mathrm{HAAH}$ molecule, (c) $C_{2 v}$ BAAB molecule, (d) C_{2} BAAB molecule, (e) $C_{3 v} \mathrm{AB}_{3}$ molecule, (f) basal plane of 3 B atoms in an AB_{3} moledule, (g) pyramidal $\mathrm{H}_{2} \mathrm{AB}$ molecules. Pyramidal $\mathrm{B}_{2} \mathrm{AC}$ molecules have similar coordinate systems as in e and f . In e and g a thick line indicates that the terminal atom is above the plane of the paper whereas a dotted line indicates that the terminal atom is below the plane of the paper.

The occupancy of the $2 b_{2}$ orbital is seen to be essential for the bent shapes of certain common HAAH molecules. As in I, one can explain bond length changes from molecule to molecule within a class. In the horizontally homologous series $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}$, and $\mathrm{H}_{2} \mathrm{O}_{2}$, increased occupancy of the $2 \mathrm{~b}_{2}$ orbital should lead to

[^0]Table I. Valence s and p Group Orbitals for Five Molecule Classes (see Figure 1)

an increase in A-A bond length ${ }^{8 \mathrm{a}}$ (1.21, 1.22 calcd, ${ }^{\text {sb }}$ $1.48 \AA$, respectively) and a decrease in A-H length ($1.06,1.08$ calcd, ${ }^{8 \mathrm{~b}} 0.97 \AA$, respectively). Between the vertically homologous molecules $\mathrm{H}_{2} \mathrm{O}_{2}(0.97 \AA)$ and $\mathrm{H}_{2} \mathrm{~S}_{2}(1.33 \AA)$ the latter should have a greater $\mathrm{A}-\mathrm{H}$ bond length since the valence AO's of the S atoms have greater $\langle r\rangle$ values than those of the O atom and hence there will be less charge concentration in the $\mathrm{H}-\mathrm{S}$ binding region (see I). Further, the $\angle \mathrm{HSS}\left(95^{\circ}\right.$) will be smaller than the $\angle \mathrm{HOO}\left(105^{\circ}\right)$ because the sulfur s and p AO's have greater $\langle r\rangle$ values than the corresponding values for the oxygen atom.

Once we have decided which HAAH molecules should be linear and which should be nonlinear it now remains to find out which of the nonlinear molecules should be planar (cis/trans) and which should be nonplanar. Consider the coordinate system and transverse forces for nonplanar HAAH molecules (C_{2} symmetry) as depicted in Figure 1b. A planar molecule is achieved by symmetric transverse motions of the two protons with respect to their respective $\mathrm{HA}_{1} \mathrm{~A}_{2}$ planes, keeping the two A atoms and the $\mathrm{A}-\mathrm{H}$ length fixed. The following considerations are not applicable to linear molecules.

The eight low-lying MO's of a C_{2} HAAH molecule can readily be arranged in the energy sequence 1 a $<1 \mathrm{~b}$ $<2 \mathrm{a}<2 \mathrm{~b}<3 \mathrm{a}<3 \mathrm{~b}<4 \mathrm{a}<4 \mathrm{~b}$, using the rules in I. Figures 2-4 depict these MO's schematically and in simplified forms. These orbitals change over to the
(8) (a) Unless otherwise mentioned, data for bond angles and lengths are taken from L. E. Sutton, Ed., Chem. Soc., Spec. Publ., No. 11 (1958); Chem. Soc., Spec. Publ., Suppl., No. 18 (1965); (b) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory," McGraw-Hill, New York, N. Y., Chapter 4.
appropriate a_{1}, b_{2}, b_{1}, and a_{2} orbitals in the cis configuration. In particular, the 2 b and 4 a orbitals in the C_{2} configuration correlate with the $1 b_{1}$ and $1 a_{2}$ orbitals, respectively, in the cis configuration.

From Figure 16 we notice that any MO which concentrates more charge outside the molecular prism than inside it will favor a trans configuration. Orbitals which throw more charge inside the prism will favor a nonplanar (C_{2}) or a cis ($C_{2 \tau}$) form. It is not possible to decide which of C_{2} and C_{20} would be more favored. From Figures 2-4 it appears that of the eight MO's only three, namely $2 \mathrm{~b}, 3 \mathrm{a}$, and 4 a , will favor a trans configuration; the rest will favor a C_{2} / C_{20} form. Therefore, we conclude that HAAH molecules with one, two, five, and six valence electrons will be either cis or nonplanar. Bent molecules with seven or eight electrons will prefer a trans form. However, a complication arises due to the crossing (at dihedral angle $\simeq 90^{\circ}$) of the 3 b and 4 a curves in the Walsh-Allen diagram. ${ }^{4-5}$ Since 3 b and 4 a orbitals favor $C_{2} / C_{2 v}$ and $C_{2 h}$ (trans) forms, respectively, this crossing means that 11-12electron molecules are likely to have both cis and trans isomers (see also ref 4a). The shapes of 13-14-electron molecules depend on the balance between the influences of the 3 b and 4 a orbitals. The fact that 14 -electron molecules like $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{~S}_{2}$ are nonplanar shows that in such cases the 3 b orbital predominates over the 4 a MO in governing the molecular shape. The same is likely to be true for 13 -electron molecules as well. One would obviously expect the barrier to internal rotation to be rather low in such nonplanar molecules. With electronic excitation to the 4 b level the dihedral angle in 13-14-electron molecules is expected to decrease.

10,

$1 b_{2}$

$2 a_{1}$

$1 a_{2}$

$3 a_{1}$

$4 a_{1}$

10

ib;

1b

20

$3 a$

$4 a$

$3 b$

46

Figure 2. Schematic valence MO's for $C_{2 v}$ HAAH (top) and C_{2} HAAH (bottom) molecules.

The angular behavior of the MO forces for C_{2} molecules agrees with the force calculations of Coulson and Deb^{6} and parallels the behavior of the corresponding MO energy gradients.
2. BAAB Molecules (Linear-Bent and PlanarNonplanar Correlations). As with HAAH molecules, our approach will be to first consider which BAAB molecules are likely to be nonlinear and then to find out which of these nonlinear molecules would tend to assume a trans configuration. As depicted in Figure 1c, a linear configuration is achieved by symmetric transverse motions of the \mathbf{B} atoms in the molecular plane, keeping the A atoms and the A-B length fixed.

The 16 valence MO's for a cis molecule (C_{20}) may be constructed from valence s and p group AO's (see Table I) as follows: (i) $1 a_{1}$, an orbital which is A-A and A-B bonding; (ii) $2 a_{1}$, an MO which is primarily a "lone pair" combination of the terminal atom orbitals; (iii) $3 \mathrm{a}_{1}$, an MO which is feeble A-B and feebler A-A bonding (this may also be regarded as a "lone pair" combination of AO's on the A atoms); (iv) 4a a_{1}, an MO which is feeble A-A and feeble A-B bonding; (v) $5 a_{1}$, an MO that is A-A bonding and feeble A-B antibonding; (vi) $6 a_{1}$, an MO which is A-A bonding and A-B antibonding; (vii) $1 \mathrm{a}_{2}$, a π MO which is A-B bonding and A-A antibonding; (viii) $2 \mathrm{a}_{2}$, a π MO which is A-A and A-B antibonding; (ix) $1 b_{1}$, a π MO that is A-A and A-B bonding; (x) $2 \mathrm{~b}_{1}$, another π MO that is $A-A$ bonding and $A-B$ antibonding; (xi) $1 b_{2}$, an MO which is A-B bonding; (xii) $2 b_{2}$, an MO
which is mainly a "lone pair" combination of the terminal atom orbitals; (xiii) $3 \mathrm{~b}_{2}$, an MO which is feeble A-B bonding (this MO may be looked upon as a "lone pair" combination of AO's on the A atoms); (xiv) $4 \mathrm{~b}_{2}$, an MO which is feeble A-B bonding and A-A antibonding; (xv) $5 \mathrm{~b}_{2}$, an MO that is A-A antibonding and mild A-B antibonding; (xvi) $6 \mathrm{~b}_{2}$, an MO which is $\mathrm{A}-\mathrm{B}$ antibonding and mild $\mathrm{A}-\mathrm{A}$ antibonding. Owing to the unavailability of relevant data it is not possible to compare these MO's with corresponding $a b$ initio or extended Hückel MO's. Following the rules in I and using the MO energy order for AB_{2} molecules, the above MO's may be arranged in the energy sequence $1 a_{1}<1 b_{2}<2 a_{1}<1 b_{1}<3 a_{1}<2 b_{2}<$ $1 \mathrm{a}_{2}<3 \mathrm{~b}_{2}<4 \mathrm{a}_{1}<2 \mathrm{~b}_{1}<5 \mathrm{a}_{1}<4 \mathrm{~b}_{2}<2 \mathrm{a}_{2}<5 \mathrm{~b}_{2}<6 \mathrm{a}_{1}$ $<5 b_{2}$. Up to the $2 a_{2}$ orbital this order agrees more or less with the extended Hückel energy order calculated by Gimarc ${ }^{4 a}$ which shows the orbitals from $1 b_{1}$ to $4 a_{1}$ lying very close to one another and sometimes crossing one another.

The schematic AO's for cis BAAB molecules are depicted in Figures 2-4. Arguments similar to the ones used previously show that the orbitals $1 a_{1}, 2 a_{1}$, and $3 a_{1}$ all favor a bent configuration while the $5 a_{1}$ MO favors a linear configuration. In the case of the $4 a_{1}$ orbital, the atomic and overlap forces would nearly balance each other and so this orbital is unlikely to have much influence on the bond angle. Of the MO's belonging to the B_{2} representation only $4 \mathrm{~b}_{2}$ favors a bent form, the other b_{2} MO's favoring a linear form.

$1 a_{1}$

51

1b,

$3 b_{2}$

$6 a_{1}$

$3 a$,

$1 a_{2}$

b_{2}

$5 b_{2}$

$2 a_{2}$

$2 a$

$3 a$

$4 a$

$5 a$

4 b

56

$6 b$

Figure 3. Schematic valence MO's for $C_{2 v} \mathrm{BAAB}$ (top) and $C_{2} \mathrm{BAAB}$ (bottom) molecules.

If we imagine that in the $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ antibonding orbital la a_{2} both halves of the p lobe on an A or a B atom are directed away from the corresponding halflobes on the neighboring A and B atoms, respectively, then it is easy to see that the $1 a_{2}$ orbital would favor a linear form. Parallel considerations show that the $1 b_{1}$ orbital would favor a bent form. Because of near cancellation between atomic and overlap forces, the $2 \mathrm{a}_{2}$ and $2 \mathrm{~b}_{1}$ orbitals are expected to have little effect on the bond angle. The nature of these MO forces is in reasonable agreement with the extended Hückel orbital energy gradients. ${ }^{4 a}$ Allen and Russell ${ }^{9}$ have previously demonstrated that the angular behavior of extended Hückel orbital energies parallels that of the corresponding $a b$ initio orbital energies.

Table II summarizes the conclusions about the linearity or nonlinearity of BAAB molecules, based on
(9) L. C. Allen and J. D. Russell, J. Chem. Phys., 46, 1029 (1967).
the above considerations. Similar conclusions have also been reached by Gimarc ${ }^{4 a}$ as well as Pearson. ${ }^{10}$ It is seen that the common nonlinear BAAB molecules must have the $4 b_{2}$ orbital filled (the $2 a_{2}$ orbital is not sensitive to bending of the molecular skeleton) and have 23-26 valence electrons. It is difficult to check the predictions regarding the shapes of molecules having <18 electrons since neither theoretical nor experimental data are available for these molecules.

An apparent exception to the present Walsh type rules is the 22 -electron molecule $\mathrm{N}_{2} \mathrm{O}_{2}$ which is predicted to be linear. Experimental data ${ }^{11}$ indicate a skew or cis from whereas ab initio calculations ${ }^{12}$ favor a
(10) R. G. Pearson, J. Chem. Phys., 52, 2167 (1970); J. Amer. Chem. Soc., 91,4947 (1969).
(1i) W. A. Guillory and C. E. Hunter, J. Chem. Phys., 50, 3516 (1969).
(12) J. N. Murrell and J. E. Williams, J. Amer. Chem. Soc., 93, 7149 (1971); T. Vladimiroff, ibid., 94, 8250 (1972).

$2 a_{1}$

$3 a_{1}$

$4 a$,

10°

$2 a^{\prime}$

3a'

$4 a^{\prime}$

$4 a^{\prime}$

$5 a^{\prime}$

$6 a^{\prime \prime}$

Figure 4. Schematic valence MO's for $C_{3 v} \mathrm{AB}_{3}$ (top), pyramidal $\mathrm{H}_{2} \mathrm{AB}$ (middle), and pyramidal $\mathrm{B}_{2} \mathrm{AC}$ (bottom) molecules.
cyclic or a trans form. Such a situation may arise when the $5 a_{1}$ and $4 b_{2}$ orbitals are either reversed in energy order or they cross each other in the WalshAllen diagram so that either (a) the $4 b_{2}$ orbital is now the HOMO or (b) there is no unique choice for the HOMO. In case a the molecule will be bent whereas in case b the molecular shape will depend on the net effect of the $5 a_{1}$ and $4 b_{2}$ orbitals, the former favoring a linear and the latter favoring a bent form. Because of progressive filling of antibonding orbitals the $\mathrm{A}-\mathrm{F}$ bond length in $\mathrm{F}_{2} \mathrm{O}_{2}(1.58 \AA)$ is greater than that in $\mathrm{F}_{2} \mathrm{~N}_{2}$ $(1.38 \AA) .^{8 b}$

Once we have decided which BAAB molecules should be linear or nonlinear it now remains to decide which of the nonlinear molecules should be planar or nonplanar. Just as with HAAH molecules, we have to choose between a $C_{2 h}$ (trans) and a $C_{2} / C_{2 \eta}$ configuration.

The 13 low-lying MO's of a C_{2} molecule may be arranged in the energy order $1 \mathrm{a}<1 \mathrm{~b}<2 \mathrm{a}<2 \mathrm{~b}<3 \mathrm{a}<$ $3 \mathrm{~b}<4 \mathrm{a}<4 \mathrm{~b}<5 \mathrm{a}<5 \mathrm{~b}<6 \mathrm{a}<6 \mathrm{~b}<7 \mathrm{a}$. For predicting planarity or nonplanarity our concern will be only with the $1-, 2-, 5-10-$, and $23-26$-electron molecules. The bonding characteristics of these MO's are evident from their schematic representation in Figures $2-4$, which depicts the $1 \mathrm{a}, 2 \mathrm{a}, 2 \mathrm{~b}, 3 \mathrm{a}, 6 \mathrm{~b}$, and 7 a MO's constructed by using the rules in I and by comparing these with the corresponding MO's of a C_{20} BAAB molecule. It is clear that these five MO's in the C_{2} configuration correlate with the $1 a_{1}, 2 a_{1}, 1 b_{1}, 3 a_{1}, 4 b_{2}$, and $2 \mathrm{a}_{2}$ MO's, respectively, in the $C_{2 v}$ configuration. From Figures $2-4$ it is also clear that the $1 \mathrm{a}, 2 \mathrm{a}$, and 3 a orbitals favor a C_{2} / C_{20} configuration, whereas the MO's 2 b and 7 a favor a trans ($C_{2 n}$) configuration. By looking at the atomic and overlap forces arising from

Figure 5. Shape diagrams for planar HAAH (top) and nonplanar HAAH (bottom) molecules.
the 6 b MO it would not be unreasonable to expect the balance of the two to be somewhat on the positive side. This orbital would, therefore, favor a C_{2} / C_{2} configuration. Therefore, BAAB molecules with one, two, five, and six valence electrons will be either cis or nonplanar, whereas those with seven-eight electrons will be trans. Nine-ten-electron molecules would again prefer a $C_{2} / C_{2 v}$ configuration. Owing to the unavailability of relevant experimental and theoretical data, it is not possible to check these predictions. The predictions for 23-26-electron molecules, however, are not straightforward because the orbital energy curves for the 6b and 7a MO's cross each other in the Walsh-Allen diagram. ${ }^{4 a}$ As with HAAH molecules, such energy crossing precludes the choice of a unique HOMO. Therefore, we are led to expect that $23-24$-electron molecules will have both cis and trans isomers. The shapes of 25 - and 26 -electron molecules depend on the net effect of 6 b and 7 a orbitals favoring respectively $C_{2} / C_{2 v}$ and $C_{2 h}$ configurations. Since 26 -electron molecules like $\mathrm{O}_{2} \mathrm{~F}_{2}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$, etc., are nonplanar, it is expected that 25 -electron molecules will also have a C_{2} symmetry since the effect of the 6 b MO predominates over that of the 7a MO.
3. $\mathbf{A B}_{3}$ Molecules (Pyramidal-Planar Correlation). As a result of symmetric motions of the B nuclei, keeping the atom A and the $A-B$ length fixed, the pyramidal form of an AB_{3} molecule goes over into the

Figure 6. Shape diagrams for planar BAAB (top) and nonplanar BAAB (bottom) molecules.
planar form and vice versa (Figure 1). The 14 valence MO's of a $C_{3 v} \mathrm{AB}_{3}$ molecule ($\theta=45^{\circ}$, say) may be constructed from valence s and p group AO's (Table I) as follows: (i) $1 a_{1}$, an MO having maximum bonding between A and the B atoms; (ii) $2 a_{1}$, an MO which is a "lone pair" combination of AO's on the terminal atoms; (iii) $3 \mathrm{a}_{1}$, an MO which is feebly bonding between the central and terminal atoms; (iv) $4 \mathrm{a}_{1}$, an MO which is predominantly localized ("lone pair") on the central atom; (v) $5 \mathrm{a}_{1}$, an MO that is feebly antibonding between A and the terminal atoms; (vi) la a_{2}, an MO which is $\mathrm{B}-\mathrm{B}$ antibonding and lies in the basal plane of the pyramid; (vii) l_{x} and $1 \mathrm{e}_{y}$, two orbitals which are $\mathrm{A}-\mathrm{B}$ bonding; (viii) $2 \mathrm{e}_{x}$ and $2 \mathrm{e}_{y}$, two orbitals which are primarily "lone pair" combinations on the terminal atoms; (ix) $3 e_{x}$ and $3 e_{y}$, two orbitals which are mild A-B antibonding; (x) $4 \mathrm{e}_{x}$ and $4 \mathrm{e}_{y}$, two orbitals which are $\mathrm{A}-\mathrm{B} \pi$ antibonding; (xi) $5 \mathrm{e}_{x}$ and $5 \mathrm{e}_{y}$, two orbitals which are $\mathbf{A}-\mathrm{B}$ full antibonding. In the absence of calculated data on AB_{3} MO's our constructed orbitals cannot be compared with $a b$ initio MO's. Using the rules in I the constructed MO's may be arranged in the energy order $1 \mathrm{a}_{1}<1 \mathrm{e}<2 \mathrm{a}_{1}<3 \mathrm{a}_{1}<2 \mathrm{e}<3 \mathrm{e}<1 \mathrm{a}_{2}<$ $4 \mathrm{e}<4 \mathrm{a}_{1}<5 \mathrm{a}_{1}<5 \mathrm{e}$ (see also AB_{2} energy order in I). This order matches with extended Hückel calculations of Gimarc and Chou, ${ }^{13}$ whose MO energy order for
(13) B. M. Gimarc and T. S. Chou, J. Chem. Phys., 49, 4043 (1968).

Figure 7. Shape diagrams for AB_{8} (top) and $\mathrm{H}_{2} \mathrm{AB}$ (bottom) molecules.
planar CO_{3} molecule, however, is not identical with the $a b$ initio MO energy order ${ }^{14}$ for BF_{3}, a planar molecule. ${ }^{15}$

From Figures 2-4 it is clear that of the five a_{1} MO's for $A B_{3}$ molecules $1 a_{1}, 2 a_{1}$, and $4 a_{1}$ will all favor a pyramidal molecule whereas the remaining two a_{1} orbitals will favor a planar molecule. The la a_{2} orbital will clearly throw charge outside the molecular pyramid and thus favor the planar configuration. The e orbitals will all favor a planar molecule. The shape diagram for these molecules is given in Figures 5-8 and the resultant geometrical predictions are summarized in Table II. The occupancy of the $4 \mathrm{a}_{1}$ "lone pair" MO by the outermost electron seems to be essential for the pyramidal shape of common AB_{3} molecules. It is easy to understand why in a complex like $\mathrm{NH}_{3} \rightarrow \mathrm{BF}_{3}$ t he BF_{3} fragment is pyramidal since this can be looked upon as a 25 -electron fragment. The radical trimethylmethyl, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$, obtained in the pyrolysis of isobutane, or neopentane, should be pyramidal since this is a 25 -electron molecule. Similarly, on further ionization $\mathrm{NO}_{3}-$ changes its shape from planar to pyramidal,

[^1]| PYRAMIDAL | POStitive fonce
 2ERO FORCE |
| :---: | :---: |
| | NEBATIVE FOACE |

$$
\begin{gathered}
\theta_{2} A C \text { MO ENEPBY ORDER }\left(c_{n}\right): \\
1 a^{\prime}\left(2 a^{\prime}<1 a^{\prime \prime}<3 a^{\prime}<4 a^{\prime}<5 a^{\prime}<2 a^{\prime \prime}<c a^{\prime}<3 a^{\prime \prime}<4 a^{\prime \prime}<>a^{\prime}<s a^{\prime \prime}<c a^{\prime}<s a^{\prime}\right.
\end{gathered}
$$

Figure 8. Shape diagram for the $\mathrm{B}_{2} \mathrm{AC}$ molecule.

$2 b_{u}$

$1 a_{4}$

Figure 9. Schematic valence MO's for trans HAAH molecules (see ref 7).

However, 20-electron tetrahedral molecules such as \mathbf{P}_{4}, As_{4}, etc., are apparent exceptions to our predictions. This may be due to our neglect of d orbitals ${ }^{16}$ which may participate significantly in the bonding of such molecules ($c f . \mathrm{BaX}_{2}$ molecules in I). In the horizontally homologous series $\mathrm{BF}_{3}, \mathrm{CF}_{3}$, and NF_{3} the pyramidal angle θ is expected to decrease due to the progressive occupancy of the $4 \mathrm{a}_{1}$ orbital (see also ref 17).

It is worthwhile to examine the effect of ligand substitution on the shapes of $A B_{3}$ molecules. In the series $\mathrm{PF}_{3}(1.535 \AA), \mathrm{PCl}_{3}(2.043 \AA), \mathrm{PBr}_{3}(2.18 \AA)$, and PI_{3} ($2.43 \AA$) the $\mathrm{P}-\mathrm{X}$ bond length is expected to increase because the heavier halogens have increasing $\langle r\rangle_{s}$ and $\langle r\rangle_{p}$ values for their valence AO's. The greater diffuseness of the valence AO's of the heavier halogens means that the terminal nuclei "see" less charge concentration between them in the $4 \mathrm{a}_{1}$ MO which is bonding between the terminal atoms. This means that the
(16) R. G. A. R. Maclagan, J. Chem. Soc. A, 2992 (1970); 222 (1971). (17) W. F. Luder, 'The Electron-Repulsion Theory of the Chemical Bond," Reinhold, New York, N. Y., 1967.

Table II. Geometry Predictions for Five Molecule Classes (The Known Molecular Shapes Are Either Empirical or Theoretical)s,10,10 a

Molecule class	No. of valence electrons	Ground state geometry	Examples	Excited state geometry	Examples	Apparent exceptions, if any
HAAH	1, 2	Bent ($C_{2 v} / C_{2}$)				
	3, 4	Linear				
	5, 6	Bent ($C_{3 v} / C_{2}$)				
	7, 8	Bent ($C_{2 h}$)				
	9, 10	Linear	$\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}{ }^{+}$	Bent (HOMO 2b ${ }_{2}$)		
	11, 12	Bent ($C_{2 v} / C_{2 h}$)	$\mathrm{N}_{2} \mathrm{H}_{2},(\mathrm{CH})_{2} \mathrm{H}_{2}{ }^{\text {b }}$			
	13, 14	Bent (C_{2})	$\mathrm{H}_{2} \mathrm{O}_{2}$	Linear (HOMO 3b2)		
	15, 16	Linear				
BAAB	1,2	Bent (C_{20} / C_{2})				
	3, 4	Linear				
	5,6	Bent ($C_{2 v} / C_{2}$)				
	7, 8	Bent ($C_{2 h}$)				
	9, 10	Bent ($C_{2 v} / C_{2}$)				
	11-22	Linear	$\mathrm{Hg}_{2} \mathrm{Cl}_{2}, \mathrm{~B}_{2} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{~F}_{2}, \mathrm{C}_{2} \mathrm{O}_{2}{ }^{2-}$		Bent (HOMO 4b ${ }_{2}$)	$\mathrm{N}_{2} \mathrm{O}_{2}$ (see text)
	23, 24	Bent ($C_{2 v} / C_{2 h}$)	$\mathrm{N}_{2} \mathrm{~F}_{2}, \mathrm{~N}_{2} \mathrm{O}_{2},{ }^{2-}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2},(\mathrm{CH})_{2} \mathrm{I}_{2}$			
	25, 26	Bent (C_{2})	$\underset{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}}{\mathrm{~S}_{4}-\mathrm{S}_{2} \mathrm{~F}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}_{2},}$		Linear (HOMO 5b ${ }^{\text {2 }}$)	
	27, 28	Linear				
AB_{8}	1,2	Pyramidal				
	3-6	Planar				
	7, 8	Pyramidal				
	9-24	Planar	$\mathrm{SO}_{3}, \mathrm{NO}_{3}{ }^{-}, \mathrm{CO}_{3}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{BO}_{3}{ }^{3-}$, $\mathrm{BF}_{3}, \mathrm{~N}_{3} \mathrm{~F}, \mathrm{NO}_{3}, \mathrm{GaCl}_{3}, \mathrm{~B}(\mathrm{OH})_{3}$, $\mathrm{CF}_{3}+$	Pyramidal (HOMO 4a ${ }_{1}$)		$\begin{gathered} \mathbf{P}_{4}, \mathrm{As}_{4}(\text { see } \\ \text { text) } \end{gathered}$
	25-26	Pyramidal	$\begin{aligned} & \mathrm{IO}_{3}^{-}, \mathrm{BiCl}_{3}, \mathrm{NF}_{3}, \mathrm{CF}_{3}, \mathrm{PCl}_{3}, \\ & \mathrm{NO}_{3}^{2-}, \mathrm{ClO}_{3}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{XeO}_{3}, \\ & \mathrm{BrO}_{3}^{-},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \end{aligned}$	Planar (HOMO 5a ${ }_{1}$)		
	27, 28	Planar	ClF_{3}			
$\mathrm{H}_{2} \mathrm{AB}$	$1,2$	Pyramidal				
	3-12	Planar	$\mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{BF}, \mathrm{H}_{2} \mathrm{C}(\mathrm{CH}), \mathrm{H}_{2} \mathrm{C}-$ $(\mathrm{CH})^{+}, \mathrm{H}_{2} \mathrm{CN}, \mathrm{H}_{2} \mathrm{C}(\mathrm{NH})$, $\left.\mathrm{H}_{2} \mathrm{C}(\mathrm{CH})_{2}\right),{ }^{b} \mathrm{H}_{2}+\mathrm{CF}$	Pyramidal (HOMO 5a')	$\mathrm{H}_{2} \mathrm{CO}$	
	13, 14	Pyramidal	$\mathrm{H}_{2} \mathrm{CF}, \mathrm{H}_{2} \mathrm{NF}, \mathrm{H}_{2} \mathrm{C}(\mathrm{OH}), \mathrm{H}_{2} \mathrm{~N}-$ $(\mathrm{OH}), \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{NH}_{2}\right), \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)^{c}$	Planar (HOMO 6a')		
	15-20	Planar				
$\mathrm{B}_{2} \mathrm{AC}$	1, 2	Pyramidal				
	3-6	Planar				
	7,8	Pyramidal				
	9-24	Planar	$\begin{aligned} & \mathrm{COCl}_{2},\left(\mathrm{CH}_{3}\right) \mathrm{BF}_{2}, \mathrm{NClO}_{2}, \mathrm{~F}_{2} \mathrm{BO}, \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \end{aligned}$	Pyramidal (HOMO 8a')	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	
	25, 26	Pyramidal	$\mathrm{F}_{2} \mathrm{C}(\mathrm{OF}), \mathrm{F}_{2} \mathrm{~N}(\mathrm{OF}), \mathrm{F}_{2} \mathrm{~N}\left(\mathrm{NF}_{2}\right)$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}, \mathrm{SOCl}_{2}, \mathrm{Cl}_{2} \mathrm{PF}$	Planar (HOMO 9a')		
	27, 28	Planar				

${ }^{a}$ M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 52, 4046 (1970); L. D. Kispert, C. U. Pittman, D. L. Allison, T. B. Patterson, C. W. Gilbert, C. F. Hains, and J. Prather, J. Amer. Chem. Soc., 94, 5979 (1972). b This implies that the molecule is planar. ${ }^{c}$ In formamide the $\mathrm{H}_{2} \mathrm{NC} \equiv$ fragment will be pyramidal since this can be looked upon as a 14-electron fragment, taking three electrons from the remaining three bonds to carbon.
bending force constant should increase in the series $\mathrm{PF}_{3}>\mathrm{PCl}_{3}>\mathrm{PBr}_{3} .{ }^{18}$ Similarly, one can predict that the bending force constant would increase in the series $\mathrm{PCl}_{3}>\mathrm{AsCl}_{3}>\mathrm{BiCl}_{3}{ }^{18}$
Once we have decided which AB_{3} molecules are pyramidal and which are planar it now remains to find out which planar molecules will have an approximate T shape. For this one need not construct a separate shape diagram since such predictions can be made from the shape diagram for AB_{2} molecules. An example, ClF_{3}, has been discussed in I (see also Table II).

From the present order of energy levels one would expect 21 -electron molecules to undergo the static Jahn-Teller effect. If the $4 \mathrm{e}_{x}$ orbital is occupied by the unpaired electron then we may expect the A- B_{1} bond to be longer than the other two. On the other hand, if the $4 \mathrm{e}_{2}$ orbital is occupied then the $\mathrm{A}-\mathrm{B}_{2}$ and
(18) G. Herzberg, 'Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, Princeton, N. J., 1964, p 177.

A-B \mathbf{B}_{3} bonds are expected to be longer than the remaining one (see Figures 2-4).
4. $\mathrm{H}_{2} \mathrm{AB}$ Molecules (Pyramidal-Planar Correlation). Although pyramidal $\mathrm{H}_{2} \mathrm{AB}$ molecules have no axis of symmetry we shall continue to define the pyramidal angle θ as the angle between a bond and an imaginary threefold axis. This, in fact, presumes that $\angle \mathrm{HAH}=\angle \mathrm{HAB}$, and, although it is generally not true, it simplifies our discussion and does not invalidate any of the following conclusions. The transverse forces and the coordinate system for $\mathrm{H}_{2} \mathrm{AB}$ molecules are depicted in Figure 1.
The ten valence MO's of a pyramidal $\left(C_{s}\right) \mathrm{H}_{2} \mathrm{AB}$ molecule ($\theta=45^{\circ}$, say) may be constructed as follows (see Table I): (i) $1 a^{\prime}$, an orbital that is primarily A-B bonding; (ii) $2 a^{\prime}$, an orbital that is primarily $A-H$ bonding; (iii) 3a', a "lone pair" orbital on the B atom; (iv) $4 \mathrm{a}^{\prime}$, an orbital which is feeble A-H and feeble A-B bonding; (v) $5 \mathrm{a}^{\prime}$, a "lone pair" orbital on the central
atom; (vi) $6 \mathrm{a}^{\prime}$, an MO that is feeble $\mathrm{A}-\mathrm{B}$ bonding and A-H mild antibonding; (vii) 7a', an MO that is A-H feeble bonding and A-B mild antibonding; (viii) $1 \mathrm{a}^{\prime \prime}$, an MO which is $\mathrm{A}-\mathrm{H}$ bonding and $\mathrm{A}-\mathrm{B} \pi$ bonding; (ix) $2 \mathrm{a}^{\prime \prime}$, an MO which is $\mathrm{A}-\mathrm{H}$ bonding and $\mathrm{A}-\mathrm{B} \pi$ antibonding. In the absence of calculated data on nonplanar $\mathrm{H}_{2} \mathrm{AB}$ molecules, the above MO's could not be compared with the ab initio ones. Using the rules in I, the above MO's may be arranged in the energy order $1 \mathrm{a}^{\prime}<2 \mathrm{a}^{\prime}<3 \mathrm{a}^{\prime}<1 \mathrm{a}^{\prime \prime}<4 \mathrm{a}^{\prime}<2 \mathrm{a}^{\prime \prime}<5 \mathrm{a}^{\prime}<$ $6 \mathrm{a}^{\prime}<7 \mathrm{a}^{\prime}<3 \mathrm{a}^{\prime \prime}$. Although ab initio calculations exist on planar $\mathrm{H}_{2} \mathrm{AB}$ molecules, computed data on the energy order of nonplanar molecules are lacking.

From the schematic MO's in Figures 2-4 one can readily see that of the ten MO's only two, viz., 1a' and $5 \mathrm{a}^{\prime}$, favor a pyramidal molecule, whereas the other eight MO's favor a planar molecule. The shape diagram for $\mathrm{H}_{2} \mathrm{AB}$ molecules is indicated in Figures 5-8 and the resultant geometry predictions are listed in Table II. $\mathrm{H}_{2} \mathrm{AB}$ molecules which are pyramidal should have either the $1 \mathrm{a}^{\prime}$ MO or the 5 a ' "lone pair" orbital occupied by the outermost electron. Because of progressive filling of the 'lone pair" orbital $5 a^{\prime}$, the pyramidal angle in the 13-electron molecule $\mathrm{H}_{2} \mathrm{CF}$ is expected to be larger than that in the 14-electron molecule $\mathrm{H}_{2} \mathrm{NF}$. Approximate MO calculations ${ }^{8 \mathrm{~b} .19}$ agree with this expectation.

After we have concluded which $\mathrm{H}_{2} \mathrm{AB}$ molecules are likely to be planar we must find out which of these planar molecules are likely to be T shaped. This can be easily done by looking at the shape diagram for AH_{2} molecules (see I) and then deciding which of the planar $\mathrm{H}_{2} \mathrm{AB}$ molecules will have a linear AH_{2} fragment (see Table II). For example, a molecule like $\mathrm{H}_{2} \mathrm{LiBe}$ is expected to be T shaped since the four-electron $\left(\mathrm{H}_{2} \mathrm{Li}-\right)$ fragment will be linear (see also I).
5. $\mathbf{B}_{2} \mathbf{A C}$ Molecules (Pyramidal-Planar Correlation). We shall adopt the view that AB_{3} molecules are special cases of the less symmetric $\mathrm{B}_{2} \mathrm{AC}$ molecules in which we shall assume that $\angle B A B=\angle B A C$. As with $\mathrm{H}_{2} \mathrm{AB}$ molecules, this simplifying assumption will not affect the validity of our conclusions. We also assume that the B atoms are heavier than C.

The low-lying valence MO's of a pyramidal $\mathrm{B}_{2} \mathrm{AC}$ molecule may be constructed (see valence s and p group AO's for the C_{s} molecule) by enlisting help from the AB_{3} MO's. Each doubly degenerate E level of $A B_{3}$ molecules now splits into an A^{\prime} and an $A^{\prime \prime}$ level.
(19) M. S. Gordon and J. A. Pople, J. Chem. Phys., 49, 4643 (1968).

The various MO's may be written as: (i) $1 a^{\prime}$, an orbital that is primarily $A-B$ bonding; (ii) $2 a^{\prime}$, an orbital that is primarily $\mathrm{A}-\mathrm{C}$ bonding; (iii) $3 \mathrm{a}^{\prime}$, an orbital which is predominantly localized on the C atom; (iv) $4 a^{\prime}$, an orbital which is predominantly localized on the \mathbf{B} atoms; (v) $5 \mathrm{a}^{\prime}$, an orbital which is mild $\mathrm{A}-\mathrm{B}$ and $\mathrm{A}-\mathrm{C}$ bonding; (vi) $6 a^{\prime}$, an orbital which is mild $A-B$ bonding and feeble $\mathrm{A}-\mathrm{C}$ antibonding; (vii) $7 \mathrm{a}^{\prime}$, an orbital which is mild $\mathrm{A}-\mathrm{C}$ bonding and mild $\mathrm{A}-\mathrm{B}$ antibonding; (viii) $8 a^{\prime}$, a 'lone pair" orbital on the A atom; (ix) $9 \mathrm{a}^{\prime}$, an orbital that is mild $\mathrm{A}-\mathrm{B}$ and $\mathrm{A}-\mathrm{C}$ antibonding; (x) $10 \mathrm{a}^{\prime}$, an orbital that is $\mathrm{A}-\mathrm{B}$ and $\mathrm{A}-\mathrm{C}$ antibonding; (xi) $1 \mathrm{a}^{\prime \prime}$, an orbital which is $\mathrm{A}-\mathrm{B}$ bonding and $\mathrm{A}-\mathrm{C} \pi$ bonding; (xii) $2 a^{\prime \prime}$, a "lone pair" orbital on the B atoms; (xiii) $3 \mathrm{a}^{\prime \prime}$, an orbital that is $\mathrm{A}-\mathrm{C} \pi$ antibonding and A-B bonding; (xiv) $4 a^{\prime \prime}$, an orbital which is A-C π bonding and $\mathrm{A}-\mathrm{B}$ mild antibonding; (xv) $5 \mathrm{a}^{\prime \prime}$, an MO which is mild $A-B$ and $A-C$ antibonding; (xvi) $6 \mathrm{a}^{\prime \prime}$, an MO which is A-C π antibonding and A-B antibonding. In the absence of calculated data on $\mathrm{B}_{2} \mathrm{AC}$ MO's our constructed MO's which are represented schematically in Figures 2-4 could not be compared with $a b$ initio MO's. Using the rules in I the above MO's may be arranged in the energy order $1 a^{\prime}<$ $2 \mathrm{a}^{\prime}<1 \mathrm{a}^{\prime \prime}<3 \mathrm{a}^{\prime}<4 \mathrm{a}^{\prime}<5 \mathrm{a}^{\prime}<2 \mathrm{a}^{\prime \prime}<6 \mathrm{a}^{\prime}<3 \mathrm{a}^{\prime \prime}<$ $4 \mathrm{a}^{\prime \prime}<7 \mathrm{a}^{\prime}<5 \mathrm{a}^{\prime \prime}<8 \mathrm{a}^{\prime}<9 \mathrm{a}^{\prime}<10 \mathrm{a}^{\prime}<6 \mathrm{a}^{\prime \prime}$. From overlap considerations the MO 7a' should have lower energy than the 'lone pair" MO 8a'.

The schematic MO's in Figures 2-4 indicate that of all the a^{\prime} MO's only $1 a^{\prime}, 3 a^{\prime}$, and $8 a^{\prime}$ favor a pyramidal molecule while all the other a' MO's as well as all the $\mathrm{a}^{\prime \prime}$ MO's favor a planar configuration. Therefore, we conclude that, like AB_{3} molecules, $\mathrm{B}_{2} \mathrm{AC}$ molecules with $1,2,7,8,25$, and 26 valence electrons will be pyramidal whereas all the other $\mathrm{B}_{2} \mathrm{AC}$ molecules will be planar. This is indicated in the appropriate shape diagram in Figures 5-8. Molecules in the B_{2} ACD class also fit in this scheme. Table II summarizes the various geometric predictions made for $\mathrm{B}_{2} \mathrm{AC}$ molecules. It is seen that for common pyramidal molecules occupancy of the central atom 'lone pair" orbital $8 a^{\prime}$ ' by the outermost electron is the crucial factor in determining their shapes.

In the pyramidal series $\mathrm{F}_{2} \mathrm{SO}, \mathrm{Cl}_{2} \mathrm{SO}$, and $\mathrm{Br}_{2} \mathrm{SO}$ the S-X bond length ($1.59,2.07$, and $2.27 \AA$) is expected to increase because of the increasing $\langle\boldsymbol{r}\rangle$ values of the terminal halogen atoms. Likewise, one may predict that in SOCl_{2} replacement of S by Se will result in a decrease in the pyramidal angle.

[^0]: on the bond angle. While the resulting shape predictions for 1-4 and 11-14 valence electron molecules agree with those made on the basis of the cis configuration (Table II), the shapes of five-ten valence electron molecules are difficult to decide, since these depend on a balance between the effects of the $2 b_{u}$ and $2 a_{g}$ MO's (see HOMO postulate in part I). The difficulty is that we cannot assume this balance to be of the same type for all five-ten-electron molecules. For instance, since $\mathrm{C}_{2} \mathrm{H}_{2}$ is linear it seems that, for nine-ten-electron molecules, the effect of the $2 b_{u}$ MO predominates over that of the $2 \mathrm{a}_{\mathrm{g}}$ MO. But, for five-eight-electron molecules, which are bent, the $2 \mathrm{a}_{\mathrm{g}}$ MO predominates over the $2 b_{u}$ MO. Thus, we see that although, in principle, we should obtain the same geometry predictions based on the trans configuration as those based on the cis configuration, the crossing of MO's in the trans configuration precludes straightforward geometry predictions. Therefore, for predictive purposes it is much easier to fall back upon the cis configuration where, fortunately, no such crossing of MO's occurs in the Walsh-Allen diagram. Such crossings are also encountered with certain other molecules (see sections 1 and 2).

[^1]: (14) M. E. Schwartz and L, C. Allen, J. Amer. Chem. Soc., 92, 1466 (1970).
 (15) There may be minor variations in the above energy order for certain molecules; for example, R. M. Golding and M. Henchman, J. Chem. Phys., 40, 1554 (1964), argue that the unpaired electron in NO_{3} should be in the laz orbital rather than in the $4 e$ MO. The la a_{2} orbital also favors a planar molecule.

